Breaking News

Pages

Selasa, 25 Oktober 2011

Program menghitung luas dan keliling lingkaran,konversi suhu serta status pegawai

Bagi kamu yg merasa kesulitan membuat program dengan bahasa pascal,apalagi kalo itu tugas dari dosen yg gak bisa ditinggalin
saya akan membagikan program buatan saya (maaf kaLo programnya masih ndeso :D ) sesuai dengan judul entri diatas
nih linknya gan, just sucking of...
:D
Read more ...

ELEKTROLISA

Pengertian Elektrolisis

Elektrolisis adalah penguraian suatu elektrolit oleh arus listrik. Pada sel elektrolisis. Reaksi
kimia akan terjadi jika arus listrik dialirkan melalui larutan elektrolit, yaitu energi listrik (arus listrik)
diubah menjadi energi kimia (reaksi redoks). Tiga ciri utama, yaitu:
1.Ada larutan elektrolit yang mengandung ion bebas. Ion-ion ini dapat memberikan atau
menerima elektron sehingga electron dapat mengalir melalui larutan.
2. Ada sumber arus listrik dari luar, seperti baterai yang mengalirkan arus listrik searah
(DC)
3. Ada 2 elektroda dalam sel elektrolisis
Elektroda yang menerima elektron dari sumber arus listrik luar disebutKat oda, sedangkan
elektoda yang mengalirkan elektron kembali ke sumber arus listrik luar disebutAnoda. Katoda adalah
tempat terjadinya reaksi reduksi yang elektrodanya negative (-) dan Anoda adalah tempat terjadinya
reaksi oksidasi yang elektrodanya positive (+)
Hukum Elektrolisis Faraday
Di awal abad ke-19, Faraday menyelidiki hubungan antara jumlah listrik yang mengalir dalam sel dan kuantitas kimia yang berubah di elektroda saat elektrolisis. Ia merangkumkan hasil pengamatannya dalam dua hukum di tahun 1833.
Hukum elektrolisis Faraday
  1. Jumlah zat yang dihasilkan di elektroda sebanding dengan jumlah arus listrik yang melalui sel.
  2. Bila sejumlah tertentu arus listrik melalui sel, jumlah mol zat yang berubah di elektroda adalah konstan tidak bergantung jenis zat. Misalnya, kuantitas listrik yang diperlukan untuk mengendapkan 1 mol logam monovalen adalah 96 485 C(Coulomb) tidak bergantung pada jenis logamnya.
C (Coulomb) adalah satuan muatan listrik, dan 1 C adalah muatan yang dihasilkan bila arus 1 A (Ampere) mengalir selama 1 s. Tetapan fundamental listrik adalah konstanta Faraday F, 9,65 x104 C, yang didefinisikan sebgai kuantitas listrik yang dibawa oleh 1 mol elektron. Dimungkinkan untuk menghitung kuantitas mol perubahan kimia yang disebabkan oleh aliran arus listrik yang tetap mengalir untuk rentang waktu tertentu.





Hantaran listrik melalui larutan elektrolit dapat dianggap sebagai aliran electron. Jadiapabila electron telah dapat mengalir dalam larutan elektrolit berarti listrik dapat mengalir dalam larutan tersebut. Elektron berasal dari kutub katode atau kutub negatif. Sedangkanpada anode melepaskan ion positip dan membentuk endpan pada logam katode. Di dalamlarutan terurai proses:
CuSO4                          Cu2+ + SO42-
Ion Cu2+ ini akan berpindah menuju keping katode sedangkan ion SO42- akanmenuju keping anode. Lama-lama keping katode ini akan timbul endapan dan terjadiperubahan massa. Massa ini dapat dihitung dengan cara :

G = a . I . t

 
Dimana:

G = jumlah endapan tembaga Cu (gram)
a = tara kimia listrik (gr/ampere.jam)I = kuat arus listrik (ampere)
t = lamanya pengaliran arus (jam)

Untuk tembaga nilai a = 1,186 gr/ampere.jam, karena G telah dapat diketahui maka I arusdapat diperoleh dengan:

I = G/at

Kegunaan sel Elektrolisis

1. Pembuatan Gas di Laboratorium
Sel elektrolisis banyak digunakan dalam industri pembuatan gas misalnyapembuatan gas oksigen, gas hydrogen, atau gas klorin. Untuk menghasilkan gasoksigen dan hydrogen, Anda dapat menggunakan larutan elektrrolit dari kationgolongan utama (K+,Na+) dan anion yang mengandung oksigen (So42-,, NO3-)dengan electrode Pt atau karbon. Reaksi elektrolisis yang mengahsilkan gas,misalnya elektrolisis larutan Na2SO4 menggunakan electrode karbon.
 
Reaksi yang terjadi :
Na2SO4 (aq)                     2Na+ (aq) + SO42-
Katode (C) : 2H2O (l) +2e-                    2OH- (aq) +H2 (g)
Anode (C) : 2H2O (l)                      4e- + 4H+  +O2 (g)

Karena pada katode dan anode yang bereaksi adalah air, semakin lama air semakin berkurang sehingga perlu ditambahkan. Perlu diingat bahwa walaupunyang bereaksi air, tidak berarti elektrolit Na2SO4 tidak diperlukan. Elektrolit iniberguna sebagai penghantar arus listrik.

2.Proses penyepuhan sutu logam emas, perak,atau nikel, bertujuan menutupi logam yangpenampilannya kurang baik atau menutupilogam yang mudah berkarat. Logam-logamini dilapiasi dengan logam lain yangpenampilan dan daya tahannya lebih baik agar tidak berkarat. Misalnya mesinkendaraan bermotor yang terbuat dari bajaumumya dilapisi kromium agar terhindar dari korosi . Beberapa alat rumah tanggajuga disepuh dengan perak sehingga lebihawet dan penampilannya tampak lebih baik.Badan sepede titanium dilapisi titanium oksida (TiO2)yang bersifat keras dantidak dapat ditembus oleh oksigen atau uap air sehingga terhindar dari reaksioksida yang menyebabkan korosi.Prinsip kerja proses penyepuhan adalah penggunaan sel dengan elektrolit larutandan electrode reaktif. Contoh jika logam atau cincin dari besi akan dewlaps emasdigunakan larutan elektrolit AuCl3(aq). Logam besi (Fe) dijadikan sebagai katode, sedangkan logam emasnya (Au) sebagai anode. Apa yang terjadi jikakedua logam ini ditukar posisinya?Mengapa? Reaksi yang berlangsung dalam proses penyepuhan besi dengan emas yaitu :
AuCl3 (aq)                   Au3+ (aq) + 3Cl- (aq)
Katode (cincin Fe) : Au3+ (aq) + 3e-                  Au (s)
Anode (Au) : Au (s)                   Au3+ (aq) + 3e-

Proses yang terjadi yaitu oksidasi logam emas (anode) menjadi Au3+(aq) Kationini akan bergerak ke katode menggantikan kation Au3+ yang direduksidi katode.Kation Au3+ di katode direduksi membentuk endapan logam emas yang melapisilogam atau cincin besi. Proses ini cukup murah karena emas yang melapisi besihanya berupa lapisan tipis.

3. Proses Pemurnian logam kotor
Proses pemurnian logam kotor banyak dilakukan dalm pertambangan . logamtransisi yang kotor dapat dimurnikan dengan cara menempatkannya sebagai anodedan logam murni sebagai katode. Elektrolit yang digunkan adalah elektrolit yangmengandung kation logam yang dimurnikan. Contoh : prose pemurnian nikelmenggunakan larutan NiSO4 . niukel murni digunkan sebagai katode, sedangkannikel kotor (logam yang dimurnikan ) digunakan sebagai anode. Reaksi yang terjadi, yaitu:
NiSO4 (aq)                         Ni2+ (aq) + SO42- (aq)
Katode (Ni murni) : Ni2+ (aq) + 2e-                   Ni (s)
Anode ( Ni kotor) : Ni (s)                     Ni2+ (aq) + 2e-

Logam nikel yang kotor pada anodedioksidasi menjdi ion Ni2+. Kemudian, ionNi2+ pada katode direduksi membentuk logam Ni dan bergabung dengan katode yang merupakan logam murni. Kation Ni2+di anode bergerak ke daerah katodemenggantikan kation yang direduksi. Untuk mendapatkan logam nikel murni(di katode)harus ada penyaringan sehinggga kotoran(tanah, pasir danlain-lain) hanya berada dianode dan tidak berpindah ke katodesehingga daerah di katode merupakan daerah yang bersih.
Read more ...

KOEFISIEN KEKENTALAN CAIRAN

Viskositas dapat dinyatakan sebagai tahanan aliaran fluida yang merupakan gesekan antara molekul – molekul cairan satu dengan yang lain. Suatu jenis cairan yang mudah mengalir dapat dikatakan memiliki viskositas yang rendah, dan sebaliknya bahan – bahan yang sulit mengalir dikatakan memiliki viskositas yang tinggi. Pada hukum aliran viskos, Newton menyatakan hubungan antara gaya – gaya mekanika dari suatu aliran viskos sebagai : Geseran dalam ( viskositas ) fluida adalah konstan sehubungan dengan gesekannya. Hubungan tersebut berlaku untuk fluida Newtonian, dimana perbandingan antara tegangan geser (s) dengan kecepatan geser (g) nya konstan. Parameter inilah yang disebut dengan viskositas. Aliran viskos dapat digambarkan dengan dua buah bidang sejajar yang dilapisi fluida tipis diantara kedua bidang tersebut. Suatu bidang permukaan bawah yang tetap dibatasi oleh lapisan fluida setebal h, sejajar dengan suatu bidang permukaan atas yang bergerak seluas A. Jika bidang bagian atas itu ringan, yang berarti tidak memberikan beban pada lapisan fluida dibawahnya, maka tidah ada gaya tekan yang bekerja pada lapisan fluida. Suatu gaya F dikenakan pada bidang bagian atas yang menyebabkan bergeraknya bidang atas dengan kecepatan konstan v, maka fluida dibawahnya akan membentuk suatu lapisan – lapisan yang saling bergeseran.Setiap lapisan tersebut akan memberikan tegangan geser (s) sebesar F/A yang seragam, dengan kecepatan lapisan fluida yang paling atas sebesar v dan kecepatan lapisan fluida paling bawah sama dengan nol. Maka kecepatan geser (g) pada lapisan fluida di suatu tempat pada jarak y dari bidang tetap, dengan tidak adanya tekanan fluida
Konsep Viskositas
Fluida, baik zat cair maupun zat gas yang jenisnya berbeda memiliki tingkat kekentalan yang berbeda. Viskositas alias kekentalan sebenarnya merupakan gaya gesekan antara molekul-molekul yang menyusun suatu fluida. Jadi molekul-molekul yang membentuk suatu fluida saling gesek-menggesek ketika fluida tersebut mengalir. Pada zat cair, viskositas disebabkan karena adanya gaya kohesi (gaya tarik menarik antara molekul sejenis). Sedangkan dalam zat gas, viskositas disebabkan oleh tumbukan antara molekul.
Fluida yang lebih cair biasanya lebih mudah mengalir, contohnya air. Sebaliknya, fluida yang lebih kental lebih sulit mengalir, contohnya minyak goreng, oli, madu dkk. Hal ini bisa dibuktikan dengan menuangkan air dan minyak goreng di atas lantai yang permukaannya miring. Pasti air ngalir lebih cepat daripada minyak goreng atau oli. Tingkat kekentalan suatu fluida juga bergantung pada suhu. Semakin tinggi suhu zat cair, semakin kurang kental zat cair tersebut. Misalnya ketika ibu menggoreng paha ikan di dapur, minyak goreng yang awalnya kental menjadi lebih cair ketika dipanaskan. Sebaliknya, semakin tinggi suhu suatu zat gas, semakin kental zat gas tersebut.
Perlu diketahui bahwa viskositas alias kekentalan cuma ada pada fluida riil (rill = nyata). Fluida riil/nyata tuh fluida yang kita temui dalam kehidupan sehari-hari, seperti air, sirup, oli, asap knalpot, dan lainnya. Fluida riil berbeda dengan fluida ideal. Fluida ideal sebenarnya tidak ada dalam kehidupan sehari-hari. Fluida ideal hanya model yang digunakan untuk membantu kita dalam menganalisis aliran fluida (fluida ideal ini yang kita pakai dalam pokok bahasan Fluida Dinamis). Mirip seperti kita menganggap benda sebagai benda tegar, padahal dalam kehidupan sehari-hari sebenarnya tidak ada benda yang benar-benar tegar/kaku. Tujuannya sama, biar analisis kita menjadi lebih sederhana.
Satuan Sistem Internasional (SI) untuk koofisien viskositas adalah Ns/m2 = Pa.s (pascal sekon). Satuan CGS (centimeter gram sekon) untuk si koofisien viskositas adalah dyn.s/cm2 = poise (P). Viskositas juga sering dinyatakan dalam sentipoise (cP). 1 cP = 1/100 P. Satuan poise digunakan untuk mengenang seorang Ilmuwan Perancis, almahrum Jean Louis Marie Poiseuille (baca : pwa-zoo-yuh).
1 poise = 1 dyn . s/cm2 = 10-1 N.s/m2
Fluida
Temperatur (o C)
Koofisien Viskositas
Air
0
1,8 x 10-3
20
1,0 x 10-3
60
0,65 x 10-3
100
0,3 x 10-3
Darah (keseluruhan)
37
4,0 x 10-3
Plasma Darah
37
1,5 x 10-3
Ethyl alkohol
20
1,2 x 10-3
Oli mesin (SAE 10)
30
200 x 10-3
Gliserin
0
10.000 x 10-3
20
1500 x 10-3
60
81 x 10-3
Udara
20
0,018 x 10-3
Hidrogen
0
0,009 x 10-3
Uap air
100
0,013 x 10-3
Setiap zat cair mempunyai karakteristik yang khas, berbeda satu zat cair dengan zat cair yang lain. Salah satunya adalah viskositas. Viskositas merupakan tahanan yang dilakukan oleh suatu lapisan fluida terhadap suatu lapisan lainnya. Sifat viskositas ini dimiliki oleh setiap fluida, gas, atau cairan.  Viskositas suatu cairan murni adalah indeks hambatan aliran cairan. Aliran cairan dapat dikelompokan menjadi dua yaitu aliran laminar dan aliran turbulen.  Aliran laminar menggambarkan laju aliran kecil melalui sebuah pipa dengan garis tengah kecil. Sedangkan aliran turbulen menggambarkan laju aliran yang besar dengan diameter pipa yang besar. Penggolongan ini berdasarkan bilangan Reynoldnya.
Viskositas menentukan kemudahan suatu molekul bergerak karena adanya gesekan antar lapisan material. Karenanya viskositas menunjukkan tingkat ketahanan suatu cairan untuk mengalir. Semakin besar viskositas maka aliran akan semakin lambat. Besarnya viskositas dipengaruhi oleh beberapa faktor seperti temperatur, gaya tarik antar molekul dan ukuran serta jumlah molekul terlarut. Fluida, baik zat cair maupun zat gas yang jenisnya berbeda memiliki tingkat kekentalan yang berbeda. Pada zat cair, viskositas disebabkan karena adanya gaya kohesi (gaya tarik menarik antara molekul sejenis). Sedangkan dalam zat gas, viskositas disebabkan oleh tumbukan antara molekul.
Fluida yang lebih cair biasanya lebih mudah mengalir, contohnya air. Sebaliknya, fluida yang lebih kental lebih sulit mengalir, contohnya minyak goreng, oli, madu dll. Tingkat kekentalan fluida dinyatakan dengan koefisien viskositas (h). Kebalikan dari Koefisien viskositas disebut fluiditas, , yang merupakan ukuran kemudahan mengalir suatu fluida.
Viskositas cairan adalah fungsi dari ukuran dan permukaan molekul, gaya tarik menarik antar molekul dan struktur cairan. Tiap molekul dalam cairan dianggap dalam kedudukan setimbang, maka sebelum sesuatu lapisan melewati lapisan lainnya diperlukan energy tertentu. Sesuai hokum distribusi Maxwell-Boltzmann, jumlah molekul yang memiliki energy yang diperlukan untuk mengalir, dihubungkan oleh factor e-E/RT dan viskositas sebanding dengan e-E/RT. Secara kuantitatif pengaruh suhu terhadap viskositas dinyatakan dengan persamaan empirik,
h = A e-E/RT
A merupakan tetapan yang sangat tergantung pada massa molekul relative dan volume molar cairan dan E adalah energi ambang per mol yang diperlukan untuk proses awal aliran.
Cara menentukan viskositas suatu zat menggunakan alat yang dinamakan viskometer. Ada beberapa tipe viskometer yang biasa digunakan antara lain :
  1. Viskometer kapiler / Ostwald
Viskositas dari cairan yang ditentukan dengan mengukur waktu yang dibutuhkan bagi cairan tersebut untuk lewat antara 2 tanda ketika mengalir karena gravitasi melalui viskometer Ostwald. Waktu alir dari cairan yang diuji dibandingkan dengan waktu yang dibutuhkan bagi suatu zat yang viskositasnya sudah diketahui (biasanya air) untuk lewat 2 tanda tersebut (Moechtar,1990).
2. Viskometer Hoppler
Berdasarkan hukum Stokes pada kecepatan bola maksimum, terjadi keseimbangan sehingga gaya gesek = gaya berat – gaya archimides. Prinsip kerjanya adalah menggelindingkan bola ( yang terbuat dari kaca ) melalui tabung gelas yang berisi zat cair yang diselidiki. Kecepatan jatuhnya bola merupakan fungsi dari harga resiprok sampel (Moechtar,1990).
3. Viskometer Cup dan Bob
Prinsip kerjanya sample digeser dalam ruangan antaradinding luar dari bob dan dinding dalam dari cup dimana bob masuk persis ditengah-tengah. Kelemahan viscometer ini adalah terjadinya aliran sumbat yang disebabkan geseran yang tinggi di sepanjangkeliling bagian tube sehingga menyebabkan penurunan konsentrasi. Penurunan konsentras ini menyebabkab bagian tengah zat yang ditekan keluar memadat. Hal ini disebut aliran sumbat (Moechtar,1990).
4.Viskometer Cone dan Plate
Cara pemakaiannya adalah sampel ditempatkan ditengah-tengah papan, kemudian dinaikkan hingga posisi di bawah kerucut. Kerucut digerakkan oleh motor dengan bermacam kecepatan dan sampelnya digeser di dalam ruang semitransparan yang diam dan kemudian kerucut yang berputar (Moechtar,1990).
Viskositas cairan juga dapat ditentukan berdasarkan jatuhnya benda melalui medium zat cair, yaitu berdasarkan hukum Stokes. Dimana benda bulat dengan radius r dan rapat d, yang jatuh karena gaya gravitasi melalui fluida dengan rapat dm/db, akan dipengaruhi oleh gaya gravitasi sebesar :
F1 = 4/3 πr3 ( d-dm ) g
Perbedaan antara viskositas cairan dengan viskositas gas adalah sebagai berikut :
Jenis Perbedaan
Viskositas Cairan
Viskositas Gas
Gaya gesek
Lebih besar untuk mengalir
Lebih kecil disbanding viskositas cairan
Koefisien viskositas
Lebih besar
Lebih kecil
Temperatur
Temperatur naik,viskositas turun
Temperatur naik,viskositas naik
Tekanan
Tekanan naik,viskositas naik
Tidak tergantung tekanan
Pengaruh Temperatur Pada Viskositas
Koefisien viskositas berubah-ubah dengan berubahnya temperature, dan hubungannya adlah :
log η = A + B/T ( a )
dimana A dan B adalah konstanta yang tergantung pada cairan. Persamaan di atas dapat ditulis sebagai :
η = Aeksp ( -∆Evis/RT )
Read more ...

MODULUS TARIKAN

Elastisitas

Ketika dirimu menarik karet mainan sampai batas tertentu, karet tersebut bertambah panjang. Silahkan dicoba kalau tidak percaya. Jika tarikanmu dilepaskan, maka karet akan kembali ke panjang semula. Demikian juga ketika dirimu merentangkan pegas, pegas tersebut akan bertambah panjang. tetapi ketika dilepaskan, panjang pegas akan kembali seperti semula. Apabila di laboratorium sekolah anda terdapat pegas, silahkan melakukan pembuktian ini. Regangkan pegas tersebut dan ketika dilepaskan maka panjang pegas akan kembali seperti semula. Mengapa demikian ? hal itu disebabkan karena bendabenda tersebut memiliki sifat elastis. Elastis atau elastisisitas adalah kemampuan sebuah benda untuk kembali ke bentuk awalnya ketika gaya luar yang diberikan pada benda tersebut dihilangkan. Jika sebuah gaya diberikan pada sebuah benda yang elastis, maka bentuk benda tersebut berubah. Untuk pegas dan karet, yang dimaksudkan dengan perubahan bentuk adalah pertambahan panjang.
Ambillah segumpaltanah liat basah, lalu letakkandi atas meja horizontal dan tekanlah dengan telapak tangan Anda agar gumpalan tanah liat tersebut berubah bentuk. Apakah gumpalan tanah liat kembali ke bentuk awalnya ketika Anda menarik telapak tangan Anda?
Beberapa benda, seperti tanah liat (lempung), adonan tepung kue, dan lilin mainan (plastisin) tidak kembali ke bentuk awalnya segera setelah gaya luar dihilangkan. Benda-benda seperti itu disebut benda tak elastis atau plastis. Dalam subbab ini kita akan mempelajari salah satu aspek elastisitas bahan, yaitu gaya pegas. Namun, sebelumnya kita bahas dahulu tentang pemahaman tegangan, regangan, dan modulus elastis.

Tegangan, regangan dan modulus elastis

Tegangan
Gaya per satuan Luas disebut juga sebagai tegangan. Secara matematis ditulis :

Tegangan = gaya/luas

σ = F/A


Satuan tegangan adalah N/m2 (Newton per meter kuadrat)
Tegangan adalah besaran skalar


Regangan
Perhatikan gambar diatas, gaya tarik yang dikerjakan pada batang berusaha meregangkan kawat hingga panjang kawat semula Lo bertambah panjang sebesar ∆L.
Regangan merupakan perbandingan antara perubahan panjang dengan panjang awal. Secara matematis ditulis :
Regangan = (pertambahan panjang)/(panjang awal) atau e = ∆L/L_o

Karena pertambahan panjang ∆ dan panjang dan panjang awal Lo adalah besaran yang sama, maka sesuai persamaan diatas, regangan e tidak memiliki satuan atau dimensi.
Kebanyakan benda adalah elastis sampai ke suatu besar gaya tertentu dinamakan batas elastis. Jika gaya yang dikerjakan pada benda lebih kecil daripada batas elastisnya, benda akan kembali ke bentuk semula jika gaya dihilangkan. Akan tetapi, jika gaya yang diberikan melampaui batas elastis, benda tidak kembali ke bentuk semula, melainkan secara permanen berubah bentuk.
Grafik diatas meunjukkan bagaimana variasi tegangan terhadap regangan ketika seutas kawat logam (baja) diberi gaya tarik sampai kawat itu patah.

Modulus Elastis
Modulus elastis E suatu bahan didefinisikan sebagai perbandingan antara tegangan dan regangan yang dialami bahan.
Modulus elastis = (tegangan )/regangan atau E = σ/e
Modulus elastis juga disebut modulus Young (diberi lambang Y) untuk menghargai Thomas Young.
satuan SI untuk tegangan σ adalah Nm-2 atau Pa, sedangkan reganagn e tidak memiliki satuan. Sesuai persamaan pada modulus elastis, maka :
satuan E = (satuan σ)/(satuan e)=Nm^(-2)atau Pa
Jika kita substitusikan tegangan σ = F/A dan regangan e = ∆L/L_o ke dalam persamaan modulus elastis, kita peroleh hubungan antara gaya tarik F dengan modulus elastis E.

E = σ/e= (F/A)/(∆L/L)

F/A=E ∆L/L

Hukum Hooke Pada Pegas
Misalnya kita tinjau pegas yang dipasang horisontal, di mana pada ujung pegas tersebut dikaitkan sebuah benda bermassa m. Massa benda kita abaikan, demikian juga dengan gaya gesekan, sehingga benda meluncur pada permukaan horisontal tanpa hambatan. Terlebih dahulu kita tetapkan arah positif ke kanan dan arah negatif ke kiri. Setiap pegas memiliki panjang alami, jika pada pegas tersebut tidak diberikan gaya. Pada kedaan ini, benda yang dikaitkan pada ujung pegas berada dalam posisi setimbang (lihat gambar a). Untuk semakin memudahkan pemahaman dirimu,sebaiknya dilakukan juga percobaan.
Apabila benda ditarik ke kanan sejauh +x (pegas diregangkan), pegas akan memberikan gaya pemulih pada benda tersebut yang arahnya ke kiri sehingga benda kembali ke posisi setimbangnya (gambar b).
Sebaliknya, jika benda ditarik ke kiri sejauh ‐x, pegas juga memberikan gaya pemulih untuk mengembalikan benda tersebut ke kanan sehingga benda kembali ke posisi setimbang (gambar c).Besar gaya pemulih F ternyata berbanding lurus dengan simpangan x dari pegas yang direntangkan atau ditekan dari posisi setimbang (posisi setimbang ketika x = 0). Secara matematis ditulis :
F = ‐kx.
Persamaan ini sering dikenal sebagai persamaan pegas dan merupakan hukum hooke. Hukum inidicetuskan oleh paman Robert Hooke (1635‐1703). k adalah konstanta dan x adalah simpangan. Tanda negatif menunjukkan bahwa gaya pemulih alias F mempunyai arah berlawanan dengan simpangan x. Ketika kita menarik pegas ke kanan maka x bernilai positif, tetapi arah F ke kiri (berlawanan arah dengan simpangan x). Sebaliknya jika pegas ditekan, x berarah ke kiri (negatif), sedangkan gaya F bekerja ke kanan. Jadi gaya F selalu bekeja berlawanan arah dengan arah simpangan x. k adalah konstanta pegas. Konstanta pegas berkaitan dengan elastisitas sebuah pegas. Semakin besar konstanta pegas (semakin kaku sebuah pegas), semakin besar gaya yang diperlukan untuk menekan atau meregangkan pegas. Sebaliknya semakin elastis sebuah pegas (semakin kecil konstanta pegas), semakin kecil gaya yang diperlukan untuk meregangkan pegas. Untuk meregangkan pegas sejauh x, kita akan memberikan gaya luar pada pegas, yang besarnya sama dengan F = +kx. Hasil eksperimen menunjukkan bahwa x sebanding dengan gaya yang diberikan pada benda.

Hukum Hooke untuk benda non Pegas

Hukum hooke ternyata berlaku juga untuk semua benda padat, dari besi sampai tulang tetapi hanya sampai pada batas‐batas tertentu. Mari kita tinjau sebuah batang logam yang digantung vertikal, seperti yang tampak pada gambar di bawah.
Pada benda bekerja gaya berat (berat = gaya gravitasi yang bekerja pada benda), yang besarnya = mg dan arahnya menuju ke bawah (tegak lurus permukaan bumi). Akibat adanya gaya berat, batang logam tersebut bertambah panjang sejauh (delta L). Jika besar pertambahan panjang (delta L) lebih kecil dibandingkan dengan panjang batang logam, hasil eksperimen membuktikan bahwa pertambahan panjang (delta L) sebanding dengan gaya berat yang bekerja pada benda. Perbandingan ini dinyatakan dengan persamaan :
F = kΔL

Persamaan ini kadang disebut sebagai hukum Hooke. Kita juga bisa menggantikan gaya berat dengan gaya tarik, seandainya pada ujung batang logam tersebut tidak digantungkan beban. Besarnya gaya yang diberikan pada benda memiliki batas‐batas tertentu. Jika gaya sangat besar maka regangan benda sangat besar sehingga akhirnya benda patah. Hubungan antara gaya dan pertambahan panjang (atau simpangan pada pegas) dinyatakan melalui grafik di bawah ini.
Jika sebuah benda diberikan gaya maka hukum Hooke hanya berlaku sepanjang daerah elastis sampai pada titik yang menunjukkan batas hukum hooke. Jika benda diberikan gaya hingga melewati batas hukum hooke dan mencapai batas elastisitas, maka panjang benda akan kembali seperti semula jika gaya yang diberikan tidak melewati batas elastisitas. tapi hukum Hooke tidak berlaku pada daerah antara batas hukum hooke dan batas elastisitas. Jika benda diberikan gaya yang sangat besar hingga melewati batas elastisitas, maka benda tersebut akan memasuki daerah plastis dan ketika gaya dihilangkan, panjang benda tidak akan kembali seperti semula; benda tersebut akan berubah bentuk secara tetap. Jika pertambahan panjang benda mencapai titik patah, maka benda tersebut akan patah. Berdasarkan persamaan hukum Hooke di atas, pertambahan panjang (delta L) suatu benda bergantung pada besarnya gaya yang diberikan (F) dan materi penyusun dan dimensi benda (dinyatakan dalam konstanta k). Benda yang dibentuk oleh materi yang berbeda akan memiliki pertambahan panjang yang berbeda walaupun diberikan gaya yang sama, misalnya tulang dan besi. Demikian juga, walaupun sebuah benda terbuat dari materi yang sama (besi, misalnya), tetapi memiliki panjang dan luas penampang yang berbeda maka benda tersebut akan mengalami pertambahan panjang yang berbeda sekalipun diberikan gaya yang sama. Jika kita membandingkan batang yang terbuat dari materi yang sama tetapi memiliki panjang dan luas penampang yang berbeda, ketika diberikan gaya yang sama, besar pertambahan panjang sebanding dengan panjang benda mula‐mula dan berbanding terbalik dengan luas penampang. Makin panjang suatu benda, makin besar besar pertambahan panjangnya, sebaliknya semakin tebal benda, semakin kecil pertambahan panjangnya. Jika hubungan ini kita rumuskan secara matematis, maka akan diperoleh persamaan sebagai berikut :

F = kΔL
ΔL = F/k

Persamaan ini menyatakan hubungan antara pertambahan panjang (delta L) dengan gaya (F) dan konstanta (k). Materi penyusun dan dimensi benda dinyatakan dalam konstanta k. Untuk materi penyusun yang sama, besar pertambahan panjang (delta L) sebanding dengan panjang benda mula‐mula (Lo) dan berbanding terbalik dengan luas penampang (A).

Penerapan Elastisitas Dalam Kehidupan Sehari‐Hari

Pada awal penjelasan mengenai hukum Hooke, gurumuda telah berjanji akan membahas mengenai aplikasi elastisitas dalam kehidupan sehari‐hari. Nah, berikut ini beberapa penerapan elastisitas dalam kehidupan kita.Kita mulai dari teknologi yang sering kita gunakan, yaitu sepeda motor atau mobil. Gambar diatas ini adalah pegas yang digunakan sebagai peredam kejutan pada kendaraan sepeda motor. Istilah kerennya pegas digunakan pada sistem suspensi kendaraan bermotor. Tujuan adanya pegas ini adalah untuk meredam kejutan ketika sepeda motor yang dikendarai melewati permukaan jalan yang tidak rata. Ketika sepeda motor melewati jalan berlubang, gaya berat yang bekerja pada pengendara (dan gaya berat motor) akan menekan pegas sehingga pegas mengalami mampatan. Akibat sifat elastisitas yang dimilikinya, pegas meregang kembali setelah termapatkan. Perubahan panjang pegas ini menyebabkan pengendara merasakan ayunan. Dalam kondisi ini, pengendara merasa sangat nyaman ketika sedang mengendarai sepeda motor. Pegas yang digunakan pada sepeda motor atau kendaraan lainnya telah dirancang untuk mampu menahan gaya berat sampai batas tertentu. Jika gaya berat yang menekan pegas melewati batas elastisitasnya, maka lama kelamaan sifat elastisitas pegas akan hilang. Oleh karena itu saran dari gurumuda, agar pegas sepeda motor‐mu awet muda, maka sebaiknya jangan ditumpangi lebih dari tiga orang. Perancang sepeda motor telah memperhitungkan beban maksimum yang dapat diatasi oleh pegas (biasanya dua orang). Pegas bukan hanya digunakan pada sistem suspensi sepeda motor tetapi juga pada kendaraan lainnya, seperti mobil, kereta api, dkk
Read more ...

Kamis, 20 Oktober 2011

Program Konversi Suhu dalam Pascal

Program Konversi_Suhu;
Uses WinCrt;
 
var f,c,r : real;
a,ul : char;
 
procedure farein_celcius;
begin
  Writeln('Program Konversi Fareinheit Ke Celcius');
  Writeln('======================================');
  Writeln;
Write('Masukan Suhu dalam Farenheit: ');readln(f);
c:=5/9*(f-32);
Writeln;
Writeln('Jadi Suhu Dalam Celcius Adalah: ',c:4:2);
end;
 
procedure farein_reamur;
begin
Writeln('Program Konversi Fareinheit Ke Reamur');
Writeln('=====================================');
Writeln;
Write('Masukan Suhu dalam Farenheit: ');readln(f);
r:=4/9*(f-32);
Writeln;
Writeln('Jadi Suhu Dalam Reamur Adalah: ',r:4:2);
end;
 
procedure celcius_farein;
begin
Writeln('Program Konversi Celcius Ke Fareinheit');
Writeln('======================================');
Writeln;
Write('Masukan Suhu dalam Celcius: ');readln(c);
f:=(9/5)*c+32;
Writeln;
Writeln('Jadi Suhu Dalam Fareinheit Adalah: ',f:4:2);
end;
 
procedure celcius_reamur;
begin
Writeln('Program Konversi Celcius ke Reamur');
Writeln('==================================');
Writeln;
Write('Masukan Suhu dalam Celcius: ');readln(c);
r:=(4/5)*c;
Writeln;
Writeln('Jadi Suhu Dalam Reamur Adalah: ',r:4:2);
end;
 
procedure reamur_celcius;
begin
writeln('Program Konversi Reamur ke Celcius');
Writeln('==================================');
Writeln;
Write('Masukan Suhu dalam Reamur: ');readln(r);
c:=(5/4)*r;
Writeln;
Writeln('Jadi Suhu Dalam Celcius Adalah: ',c:4:2);
end;
 
procedure reamur_farein;
begin
writeln('Program Konversi Reamur ke Fareinheit');
Writeln('=====================================');
Writeln;
Write('Masukan Suhu dalam Reamur: ');readln(r);
f:= (9/4)*r+32;
Writeln;
Writeln('Jadi Suhu Dalam Fareinheit Adalah: ',f:4:2);
end;
 
begin
repeat
clrscr;
writeln ('Program konversi suhu');
writeln;
writeln ('1. fareinheit - celcius');
writeln ('2. fareinheit - reamur');
writeln ('3. celcius - reamur');
writeln ('4. celcius - fareinheit');
writeln ('5. reamur - celcius');
writeln ('6. reamur - farenheit');
writeln;
write ('pilih nomor konversi : '); read (a);
writeln;
case a of
'1' : farein_celcius;
'2' : farein_reamur;
'3' : celcius_reamur;
'4' : celcius_farein;
'5' : reamur_celcius;
'6' : reamur_farein;
else
writeln ('Nomor yang anda masukkan salah');
end;
Writeln;Writeln;
Write('Mau Coba Lagi [Y/T]: ');Readln(ul);
Until Upcase(ul) = 'Y';
end.
Read more ...
Copyright ©2014 Zero-Zone Powered By Blogger
Designed By Seo Blogger Templates